Tranilast suppresses vascular chymase expression and neointima formation in balloon-injured dog carotid artery.
نویسندگان
چکیده
BACKGROUND Activation of vascular chymase plays a major role in myointimal hypertrophy after vascular injury by augmenting the production of angiotensin (ANG) II. Because chymase is synthesized mainly in mast cells, we assumed that the chymase-dependent ANG II formation could be downregulated by tranilast, a mast cell-stabilizing antiallergic agent. We have assessed inhibitory effects of tranilast on neointima formation after balloon injury in the carotid artery of dogs, which share a similar ANG II-forming chymase with humans, and further explored the pathophysiological significance of vascular chymase. METHODS AND RESULTS Either tranilast (50 mg/kg BID) or vehicle was orally administered to beagles for 2 weeks before and 4 weeks after balloon injury. Four weeks after the injury, remarkable neointima was formed in the carotid arteries of vehicle-treated dogs. Chymase mRNA levels and chymaselike activity of vehicle-treated injured arteries were increased 10.2- and 4.8-fold, respectively, those of uninjured arteries. Angiotensin-converting enzyme (ACE) activity was slightly increased in the injured arteries, whereas ACE mRNA levels were not. Tranilast treatment completely prevented the increase in chymaselike activity, reduced the chymase mRNA levels by 43%, and decreased the carotid intima/media ratio by 63%. In vehicle-treated injured arteries, mast cell count in the adventitia showed a great increase, which was completely prevented by the tranilast treatment. Vascular ACE activity and mRNA levels were unaffected by tranilast. CONCLUSIONS Tranilast suppressed chymase gene expression, which was specifically activated in the injured arteries, and prevented neointima formation. Suppression of the chymase-dependent ANG II-forming pathway may contribute to the beneficial effects of tranilast.
منابع مشابه
Tranilast Inhibits Vascular Smooth Muscle Cell Growth and Intimal Hyperplasia by Induction of p21 and p53
Tranilast, which is an antiallergic drug, has a potent effect on preventing postangioplasty restenosis. To elucidate this mechanism, we studied the effect of tranilast on the proliferation of vascular smooth muscle cells (SMCs) in vitro and in vivo. Tranilast decreased the growth rate of SMCs stimulated by either 10% FBS or platelet-derived growth factor. The IC50 value, evaluated as cell numbe...
متن کاملApoptosis and Bcl-xs in the intimal thickening of balloon-injured carotid arteries.
We performed balloon injury in the rat carotid artery and identified intimal thickening after injury. Balloon-injured carotid arteries showed maximum thickness of the neointima on the 14th day before complete endothelial cell regeneration. In this lesion we identified apoptosis of vascular smooth muscle cells (VSMCs) by in situ DNA labelling and electron microscopy in the neointima on the 14th ...
متن کاملData on the involvement of Meox1 in balloon-injury-induced neointima formation of rats
In the previous report, Meox1 was found to promote SMCs phenotypic modulation and injury-induced vascular remodeling by regulating the FAK-ERK1/2-autophagy signaling cascade (Wu et al., 2017) [1]. Here, we presented new original data on the involvement of Mesoderm/mesenchyme homeobox gene l (Meox1) in balloon-injury-induced neointima formation of rat. In rat carotid artery balloon injury model ...
متن کاملThe transcription factor ETS-1 mediates proinflammatory responses and neointima formation in carotid artery endoluminal vascular injury.
The transcription factor ETS-1 is a critical mediator of vascular inflammation and hypertrophy in hypertension. We tested the hypothesis that ETS-1 is a mediator of proinflammatory responses and neointimal hyperplasia after balloon injury of the carotid artery. For this study, we took advantage of the availability of an ETS-1 dominant-negative (DN) peptide. Sprague-Dawley rats were assigned to ...
متن کاملInhibition of neointima by angiotensin-converting enzyme inhibitor in porcine coronary artery balloon-injury model.
Because hepatocyte growth factor (HGF) stimulates growth of endothelial cells exclusively without replication of vascular smooth muscle cells, we hypothesized that HGF may play a role in cardiovascular disease. In human vascular smooth muscle cells, angiotensin II suppressed local vascular HGF production in a dose-dependent manner. Using a rat balloon-injury carotid artery model, we demonstrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 99 8 شماره
صفحات -
تاریخ انتشار 1999